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Abstract

Systems supporting decision making became almost inevitable in the modern
complex world. Their efficiency depends on the sophisticated interfaces enabling
a user take advantage of the support while respecting the increasing on-line infor-
mation and incomplete, dynamically changing user’s preferences. The best deci-
sion making support is useless without the proper preference elicitation. The paper
proposes a methodology supporting automatic learning of quantitative description
of preferences. The proposed elicitation serves to fully probabilistic design, which
is an extension of Bayesian decision making.

1 Introduction

A feasible and effective solution of preference elicitation problem decides on the efficiency of any
intelligent system supporting decision making. Indeed, to recommend a participant1 an optimal se-
quence of optimal decisions requires knowing some information about what the participant (affected
by the recommended decision, if accepted) considers as “optimal”. Extracting the information about
the participant’s preferences or utility is known as preference elicitation or utility elicitation2. This
vital problem has been repeatedly addressed within artificial intelligence, game theory, operation
research and many sophisticated approaches have been proposed [7], [8], [6], [5]. A number of
approaches has arisen in connection with applied sciences like economy, social science, clinical
decision making, transportation, see, for instance, [18], [9]. To ensure feasibility and practical ap-
plicability, many decision support systems have been designed under various assumptions on the
structure of preferences. In particular, a broadly accepted additive independence [16] of values of
individual attributes is not generally valid. In many applications the preferences of attributes are
mostly dependent and the assumption above significantly worsens the elicitation results3.

To benefit from any decision support, the preferences should be known in the form allowing their
processing by an intended decision support system. Unless the participant’s preferences are com-
pletely provided by the participant, they should be learned from either past data or domain-specific

1Participant is also known as user, decision maker, agent.
2The term utility generally has a bit different coverage within decision-making context.
3The assumption can be weakened by a introducing a conditional preferential independence, [4].
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information (technological knowledge, physical laws, etc.). Eliciting the needed information itself is
inherently hard task, which success depends on experience and skills of an elicitation expert. Prefer-
ences can be elicited from past data directly collected on the underlying decision-making process or
from indirect data learned from a number of similar situations. Despite acquiring the probabilistic
information from data is well-elaborated, learning can be hard, especially when the space of possible
behaviour is larger than that past data cover. Then the initial preferences for the remaining part of
the behaviour should be properly assigned.

The process of eliciting of the domain-specific information is difficult, time-consuming and error-
prone task4. Domain experts provide subjective opinions, typically expressed in different and incom-
patible forms. The elicitation expert should elaborate these opinions into a distribution describing
preferences in a consistent way. Significant difficulties emerge when competitive/complementing
opinions with respect to the same collection of attributes should be merged. A proper merging their
individual opinions within a high-dimensional space of possible behaviour is unfeasible. Besides
domain experts having domain-specific information are often unable to provide their opinion on a
part of behaviour due to either limited knowledge of the phenomenon behind or the indifference
towards the possible instances of behaviour. Then, similarly to the learning preferences from past
data, the optimal strategy heavily depends on the initial preferences assigned to the part of behaviour
not “covered” by the domain-specific information.

Process of eliciting information itself requires significant cognitive and computational effort of the
elicitation expert. Even if we neglect the cost of this effort5, the elicitation result is always very
limited by the expert’s imperfection, i.e. his inability to devote an infinite deliberation effort to
eliciting. Unlike imperfection of experts providing domain-specific information, imperfection of
elicitation experts can be eliminated. This motivate the search for a feasible automated support of
preference elicitation, that does not rely on any elicitation expert.

The dynamic decision making strengthes the dependence on the preference elicitation. Indeed, the
participant acting within a dynamically changing environment with evolving parameters may grad-
ually change preferences. The intended change may depend on the future behaviour. The overall
task is going harder when participant interacts with other dynamic imperfect participants within a
common environment.

The paper concerns a construction of probabilistic description of preferences based on the informa-
tion available. Dynamic decision making under uncertainty from the perspective of an imperfect
participant is considered. The participant solves DM task with respect to its environment and based
on a given finite set of opinions gained from providers of domain expertise or learned from the past
data or both. The set indirectly represents the preferences in a non-unique way6. Additionally, the
participant may be still uncertain about the preferences on a non-empty subset of behaviour. To de-
sign an optimal strategy, a participant employs Fully Probabilistic Design (FPD) of DM strategies,
[10, 12] whose specification relies on the notion of an ideal closed-loop model which is essentially
a probabilistic description of the preferences. In other words, an ideal closed-loop model describes
the closed-loop behaviour, when the participant’s DM strategy is optimal. FPD searches for the op-
timal strategy by minimising the divergence of the current closed-loop description on the ideal one.
Adopted FPD implies availability of probabilistic description of the environment and probabilistic
description of the past closed-loop data.

Section 2 specifies assumptions under which the automated preference elicitation is proposed within
the considered FPD. Section 3 describes construction of the ideal closed-loop distribution based on
the information provided. The proposed solution is discussed in Section 4 followed by the conclud-
ing remarks in Section 5.

4It should be mentioned that practical solutions mostly use a laborious and unreliable process of manual
tuning a number of parameters of the pre-selected utility function. Sometimes the high number of parameters
makes this solution unfeasible. Then there are attempts to decrease the number of parameters to reach an
acceptable feasibility level.

5This effort is usually very high and many sophisticated approaches aim at optimising a trade-off between
elicitation cost and value of information it provides (often decision quality is considered), see for instance [3].

6Even, when we identify instances of behaviour that cannot be distinguished from the preferences’ view-
point.
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2 Assumptions

The considered participant deals with a DM problem, where the reached decision quality is ex-
pressed in terms of a `a-tuple of attributes a = (a1, . . . , a`a) ∈ aaa =

∏∏∏`a
i=1aaai, `a < ∞.

∏∏∏
denotes

Cartesian product of sets aaai the respective attribute entries belong to. The occurrence of attributes
depends on an optional `d-dimensional decision d = (d1, . . . , d`d) ∈ ddd =

∏∏∏`d
j=1dddj , `d <∞. In the

considered preference elicitation problem, the following assumptions are adopted.

A1 The participant is able to specify its preferences on the respective entries of attributes ai ∈ aaai
such that the most preferred value of each attribute is uniquely defined. For convenience,
let the best attribute value be zero.

A2 The participant has at disposal a probabilistic modelM(a|d), which is the probability density
(pd7) of the attributes a conditioned on decisions d. The support ofM(a|d) is assumed to
include (aaa,ddd).

A3 The participant has8 a joint pd P(a, d), describing behaviour (a, d) of the closed loop formed
by the acting participant and by its environment9. The support of P(a, d) is assumed to
include (aaa,ddd).

A4 The participant uses fully probabilistic design (FPD), [12], of decision-making strategies. FPD
considers a specification of the ideal pd I(a, d) assigning high values to desired pairs
(a, d) ∈ (aaa,ddd) and small values to undesired ones. The optimal randomised strategy
Sopt(d) is selected among strategy-describing pds S ∈ SSS as a minimiser of the Kullback-
Leibler divergence (KLD, [17])

Sopt ∈ Argmin
SSS

∫
(aaa,ddd)

M(a|d)S(d) ln
(
M(a|d)S(d)
I(a, d)

)
d(a, d) = Argmin

SSS
D(MS||I).

Note that the use of FPD represents no constraints as for a classical preference-quantifying utility
U(a, d) : (aaa,uuu)→ [−∞,∞) it suffices to consider the ideal pd of the form

I(a, d) = M(a|d) exp(U(a, d)/λ)∫
(aaa,ddd)
M(a|d) exp(U(a, d)/λ) d(a, d)

, λ > 0.

Then, the FPD with such an ideal pd and λ→ 0 arbitrarily well approximates the standard Bayesian
maximisation of the expected utility [15].

3 Preference Elicitation

Under the assumptions A1 – A4, the addressed elicitation problem reduces to a justified, algorithmic
(elicitation-expert independent) construction of the ideal pd I(a, d).
The following steps constitute the considered construction of the preference-expressing ideal.

S1 Each ideal pd I(a, d) determines marginal pds Ii(ai) on the respective attribute entries ai ∈ aiaiai,
i = 1, . . . , `a. The marginal ideal pd Ii(ai) respects the highest preference for ai = 0 if

Ii(ai = 0) ≥ Ii(ai), ∀ai ∈ aaai. (1)

Thus, the ideal pds meeting (1) for i = 1, . . . , `a respect the participant’s preferences.
S2 A realistic ideal pds (meeting (1)) should admit a complete fulfilment of preferences with respect

to any individual attribute entry ai whenever the design focuses solely on it. It is reasonable
to restrict ourselves to such ideal pds as the ideal pd, which cannot be reached at least with
respect to individual attributes is unrealistic.

7pd, Radon-Nikodým derivative [21] of the corresponding probabilistic measure with respect to a dominat-
ing, decision-strategy independent, measure denoted d.

8or can learn it
9The closed-loop model P(a, d) can alternatively describe a usual behaviour of other participants in similar

DM tasks.
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The complete fulfilment of preferences requires an existence of decision strategy Si(d)
such that the closed-loop modelM(a|d)Si(d) has the marginal pd on ai equal to the cor-
responding marginal Ii(ai) of the considered ideal pd I(a, d).
FPD methodology is used to specify realistic marginal pds, Iri (ai), i = 1, . . . , `a.

S3 The set of ideal pds I(a, d) having given realistic marginal pds Iri (ai), i = 1, . . . , `a is non-
empty as it contains the ideal pd independently combining the expressed marginal prefer-
ences I(a, d) =

∏`a
i=1 Iri (ai). Generally, the discussed set contains many pds. Without

a specific additional information, the chosen pd should at least partially reflect behaviour
occurred in the past. Then the adequate representant of this set is the minimiser of the KLD
[22] of I(a, d) on the joint pd P(a, d). According to A3 P(a, d) describes the past closed-
loop behaviour and serves as the most uncertain (the least ambitious) ideal: in the worst
case, the ideal pd qualifies the past behaviour as the best one. The minimiser over the set of
ideal pds having marginal pds Iri (ai), i = 1, . . . , `a, is described below and provides the
final solution of the addressed elicitation problem.

The pds Iri (ai), discussed in Step S2 can be obtained as follows. Let us consider the ith entry ai.
Then `a-tuple a can be split a = (a−i, ai), where a−i contains all attributes except ai and the ideal
pd factorises [20]

I(a, d) = Ii(a−i, d|ai)Ii(ai). (2)
When solely caring about the ith attribute, any distribution of (a−i, d) can be accepted as the ideal
one. This specifies the first factor of the ideal pd (2) as ([11])

Ili(a−i, d|ai) =
M(a|d)S(d)∫

(aaa−i,ddd)
M(a|d)S(d) d(a−i, d)

. (3)

This choice, complemented by an arbitrary choice of Ii(ai) specifies an ideal pd on (aaa,ddd) and the
strategy iS(d) minimising KLD of the closed-loop model MS on it cares about the ith attribute
only. For the inspected ideal pd, the optimised KLD optimised with respect a strategy S reads

D(MS||I) =
∫
(aaa,ddd)

M(a|d)S(d) ln
(∫

ddd
M(ai|d)S(d) dd
Ii(ai)

)
d(a, d). (4)

Let us assume that there is id ∈ ddd such thatM(ai = 0| id) ≥M(ai| id), ∀ai ∈ aaai. Then, the ideal
pd I(a, d) = Ii(a−i, d|ai)Iri (ai) with

Iri (ai) =M(ai| id) (5)
meets (1) and is the realistic marginal pd in the sense described in S2. Indeed, the deterministic strat-
egy iS(d) = δ(d− id) = pd concentrated on id and ideal pd IliIri make the KLD (4)D(M iS||IliIri )
equal to zero, which is the absolute minimum.

The constraints (5) on the marginal ideal pds exhaust all information about the preferences available,
see A1 – A3. It remains to select one among multitude of such ideal pds meeting (5). The minimum
KLD (cross-entropy) principle [22] recommends to select the ideal pd, which minimises its KLD on
a pd representing the most uncertain preference description. As discussed in S3, the pd describing
the past history serves to this purpose. The following proposition explicitly specifies the minimiser
and provides the solution of the addressed preference elicitation problem.

Proposition 1 (The recommended ideal pd) The ideal pd I(a, d) describing the supplied prefer-
ences via (5) and minimising KLD D(I||P), where P describes the past history, has the form

I(a, d) = P(d|a)
`a∏
i=1

Iri (ai) (6)

=
P(d, a)∫

ddd
P(a, d) dd

`a∏
i=1

M(ai| id), with id ∈ ddd : M(ai = 0| id) ≥M(ai| id), ∀i ∈ {1, . . . , `a}.

Proof

The convex functionalD(I||P) on the convex set given by considered constraints (5) has the unique
global minimum. Thus, it suffices consider weak variations of the corresponding Lagrangian func-
tional. The pd (6) makes them equal to zero and thus it is the global minimiser searched for.

�
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4 Discussion

Many important features of the proposed solution (6) is implied by the fact that the constructed ideal
pd reflects the relationM(a|d) between attributes and decisions. Specifically,

• The marginal ideal pds (5) are not fully concentrated on the most desirable attribute value
(0), which reflects the fact that ai = 0 cannot be reached with certainty.
• A specific bd is a bad decision comparing to other od if P(a = 0| bd) << P(a = 0| od).

As the closed-loop model P(a, d) = P(a|d)P(d) is a factor in (6), the decision bd is
perceived as a bad one by the ideal pd (6) unless an unbalanced experience is faced, i.e.
unless P( bd) >> P( od). Thus, the constructed ideal distinguishes the good and bad
decisions made in past if they both occur in a balanced way.
The danger of an unbalanced occurrence of good and bad decisions can be counteracted by
modifying P(a, d) in order to stimulate exploration. It suffices to take it as a mixture of the
closed-loop model gained from observations and of an exploration-allowing “flat” pd.

• The functional form of the ideal pd is determined by the modelM(a|d): it is not created
in an ad hoc, model independent, manner unlike utilities [16].

• It is always possible to project the constructed ideal pd into a class of feasible pds by using
information criterion justified in [2, 14], if the constructed ideal pd is too complex for
numerical treatment or analysis.

• The model M(a|d) as well as the closed-loop model of the past history P(a, d) can be
learnt in a standard Bayesian way [1, 20]. Consequently, the preference description (6),
derived from them, is learned, too.

• The involved pds can quantify the joint distributions of discrete-valued as well as con-
tinuous valued attributes. This simplifies the elicitation of preferences given jointly by
categorical and numerical attributes.

• The approach can be directly extended to a dynamic DM, in which attributes and decisions
evolve in time. It suffices to apply Proposition 1 to factors of involved pds.

• The construction can be formally performed even when several best (mutually ordered) at-
tributes are admitted in a variant of Assumption A1. The subsequent evaluations following
the same construction line are, however, harder.

• The considered preference specification is quite common but it does not cover all possibil-
ities. For instance, an attribute ai ∈ aaai may have preferences specified on a proper subset
∅ 6= αααi ⊂ aaai. If ai = 0 ∈ αααi is considered as the most desirable value of the attribute, the
proposed elicitation way applies with a reduced requirementM(ai = 0| id) ≥ M(ai| id),
∀ai ∈ αααi, cf. (1). Then, the proposed procedure can be used without essential changes. The
real problem arises when there is no information whether the most preferred attribute is in∏∏∏`a

i=1αααi or not. Then, the participant has to provide an additional feedback by specifying a
rank of the newly observed attribute with respect to the initially set values 0. The problem
is tightly connected with a sequential choice of the best variant, e.g., [19].

5 Concluding Remarks

The solution proposes a methodology of automated preference elicitation of the ideal pd for a com-
mon preference specification. Covering other preference specifications is the main problems to be
addressed. Also, the proposed solution is to be connected with an alternative view presented in
[13], where the preference elicitation was directly treated as a learning problem and reduced to a
specification of a prior pd on parameters entering environment model (and thus learnable) and pa-
rameters entering only the ideal pd (and thus learnable only via a well-specified join prior pd). The
design of specific algorithmic solutions for commonly used environment models is another topic
to be covered. In spite of the width of the problems hidden behind these statements, the selected
methodological direction is conjectured to be adequate and practically promising.
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